Fractional Flow Reserve is the Gold Standard Index for Assessing Coronary Artery Disease

William F. Fearon, MD Professor of Medicine Director, Interventional Cardiology Stanford University

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest /arrangement or affiliation with the organization(s) listed below

Affiliation	/Financ	cial Rela	<u>tionship</u>
Grant/ Re	search	Suppor	t:
Grant/ Re	search	Suppor	t:
Grant/ Re	search	Suppor	t:
Grant/ Re	search	Suppor	t:

Consulting Fees/Honoraria:

Major Stock Shareholder/Equity Interest:

Royalty Income:

Ownership/Founder:

Salary:

Intellectual Property Rights:

Other Financial Benefit (minor stock options):

Company Abbott Medtronic ACIST Medical CathWorks

Boston Scientific

HeartFlow

Why is FFR the Gold Standard?

- Well-founded scientific basis
- Validated in an animal model
- Well-validated against non-invasive tests for ischemia
- Highly reproducible
- Predicts clinical outcomes
- Most widely studied index

Scientific Basis of FFR

Schematic model of the coronary circulation

Pijls, et al. Circulation 1993;86:1354-67.

Scientific Basis of FFR

Equations to derive FFR_{myo}, FFR_{cor}, and FFR_{coll}

$$\frac{P_a - P_v}{P_w - P_v} = 1 + \frac{R_c}{R} = \text{constant}$$
(1)

As explained later, Equation 1 is used in connection with Equation 2 in case P_a is not constant.

$$FFR_{cor} = \frac{Q_s}{Q_s^N} = \frac{P_d - P_w}{P_a - P_w}$$
(2a)

$$=1-\frac{\Delta P}{P_a-P_w}$$
(2b)

$$FFR_{myo} = \frac{Q}{Q^N} = \frac{P_d - P_v}{P_a - P_v}$$
(3a)

$$=1-\frac{\Delta P}{P_a-P_v}$$
(3b)

$$Q = Q_s + Q_c \tag{4a}$$

$$Q_c = (\text{FFR}_{myo} - \text{FFR}_{cor}) \cdot Q^N$$
(4b)

Pijls, et al. Circulation 1993;86:1354-67.

$$\frac{Q_s^{(2)}}{Q_s^{(1)}} = \frac{P_d^{(2)} - P_w^{(2)}}{P_d^{(1)} - P_w^{(1)}}$$
(5a)

or

$$\frac{\text{FFR}_{cor}^{(2)}}{\text{FFR}_{cor}^{(1)}} = \left(1 - \frac{\Delta^{(2)}P}{P_a^{(2)} - P_w^{(2)}}\right) : \left(1 - \frac{\Delta^{(1)}P}{P_a^{(1)} - P_w^{(1)}}\right) \quad (5b)$$

$$\frac{Q^{(2)}}{Q^{(1)}} = \frac{P_d^{(2)} - P_v^{(2)}}{P_d^{(1)} - P_v^{(1)}}$$
(6a)

or

$$\frac{\text{FFR}_{myo}^{(2)}}{\text{FFR}_{myo}^{(1)}} = \left(1 - \frac{\Delta^{(2)}P}{P_a^{(2)} - P_v^{(2)}}\right) : \left(1 - \frac{\Delta^{(1)}P}{P_a^{(1)} - P_v^{(1)}}\right) \quad (6b)$$
$$\frac{Q_c^{(2)}}{Q_c^{(1)}} = \frac{\Delta^{(2)}P}{\Delta^{(1)}P} \quad (7a)$$

or

Animal Validation of FFR

FFR compared to invasive gold standard of absolute flow in 5 dogs at 3 different arterial pressure levels and 12 different stenoses (r=0.98)

Pijls, et al. Circulation 1993;86:1354-67.

Validation of FFR

FFR compared to noninvasive gold standard of relative flow reserve using PET in 22 patients with LAD stenosis

De Bruyne, et al. Circulation 1994;89:1013-22.

Validation of FFR

FFR compared to noninvasive gold standard of relative flow reserve using PET in 22 patients with LAD stenosis

	Correlation Coefficient
Myocardial fractional flow reserve	.87
Resting transstenotic pressure gradient	61

De Bruyne, et al. Circulation 1994;89:1013-22.

Human Validation of FFR

FFR compared to noninvasive "gold" standard of 3 stress tests (accuracy > 95%)

FFR < 0.75 : Sensitivity = 88% Specificity = 100%

Pijls, et al. New Engl J Med 1996;334:1703

FFR Validation Studies

Noninvasive Imaging

Study	Number of patients (lesions)	Ischaemic test	Best cut-off value	Accuracy (%)	Clinical setting		
Intravenous adenosine infusion (140 µg/kg/min)							
Pijls (1995) ³⁴	60 (60)	X-ECG	0.74	97	SVD		
Pijls (1996) ³³	45 (45)	X-ECG, MPS, DSE	0.75	93	SVD		
Jimenez-Navarro (2001) ¹²⁰	21 (21)	DSE	0.75	90	SVD		
Rieber (2004) ¹²¹	48 (48)	MPS, DSE	0.75	76-81	MVD		
Erhard (2005)122	47 (47)	MPS, DSE	0.75	77	MVD		
Hacker (2005) ¹²³	50 (50)	MPS	0.75	86	SVD		
Total or average (as applicable)	271 (271)	NA	0.75	87	NA		
Intracoronary adenosine bolus (maximum	40–60 µg)						
Tron (1995) ¹²⁴	62 (70)	MPS	0.69	67	1, 2, and 3-VD		
Bartunek (1997) ¹²⁵	37 (37)	DSE	0.67	90	SVD		
Caymaz (2000) ¹²⁶	30 (40)	MPS	0.75	95	SVD		
Fearon (2000)127	10 (10)	MPS	0.75	95	SVD		
Chamuleau (2001) ¹²⁸	127 (161)	MPS	0.74	77	MVD		
Seo (2002) ¹²⁹	25 (25)	MPS	0.75	60	Previous MI		
Kruger (2005) ¹³⁰	42 (42)	MPS	0.75	88	ISR		
Samady (2006)131	48 (48)	MPS, DSE	0.78	92	Previous MI		

FFR Validation Studies

Noninvasive Imaging

van de Hoef (2012) ⁶⁶ *	232 (299)	MPS	0.76	74	MVD
Total or average (as applicable)	613 (732)	NA	0.74	83	NA
Other method of vasodilatation					
De Bruyne (1995) ³⁸ (Intracoronary papaverine or adenosine)	60 (60)	X-ECG, MPS	0.66	87	SVD
Bartunek (1996) ¹³² (Intracoronary papaverine or adeno	75 (75)	DSE	0.75	81	SVD
Abe (2000) ¹³³ (Intravenous ATP)	1,5001	Patien	ts	91	SVD
De Bruyne (2001) ¹³⁴ (Intravenous or intracoronary adence or intravenous ATP)	04 04			85	Previous MI
Yanagisawa (2002) ¹³⁵ (Intracoronary papaverine)	24 51	laies		76	Previous MI
Ziaee (2004) ^{136‡} (Intravenous or intracoronary adenosine)	55 (55)	MPS, X-ECG, DSE	0.75	88	Ostial
Morishima (2004) ¹³⁷ (Intracoronary papaverine)	20 (20)	MPS	0.75	85	SVD
Kobori (2005) ^{138§} (Intracoronary papaverine)	147 (155)	MPS	0.75	70	Restenosis
Ragosta (2007) ¹³⁹ (Intracoronary adenosine, 30–40 µg in the RCA, 80–100 µg in the LCA)	36 (36)	MPS	0.75	69	MVD

van de Hoef, et al. Nat Rev Cardiol 2013;10:439-52.

More Recent "Validation" Studies

FFR and iFR compared with "hyperemic stenosis resistance" (HSR)

Hyperemic stenosis resistance is not a gold standard. There are no validation studies or clinical outcome studies with HSR.

Sen, et al. J Am Coll Cardiol 2013;61:1409-20.

More Recent "Validation" Studies

FFR, iFR, Resting Pd/Pa measured in 115 patients and compared with PET

PET-derived CFR<2.0 as a reference standard

CFR is not a gold standard for assessing epicardial disease! CFR interrogates the entire coronary circulation. We do not expect FFR to correlate with CFR!

Hwang, et al. J Am Coll Cardiol Intv 2017;10:751-60.

More Recent Validation Study

FFR, iFR, Resting Pd/Pa measured in 115 patients and compared with PET

PET-derived RFR<0.75 as a reference standard

When compared with relative flow reserve (RFR), which is more epicardial specific, FFR is significantly more accurate than iFR.

Hwang, et al. J Am Coll Cardiol Intv 2017;10:751-60.

Most Recent Validation Study

FFR and iFR compared with dobutamine stress echo in 62 stable CAD patients

DSE as gold standard					
	Sensitivity	Specificity	NPV	PPV	Accuracy
iFR	55.6	75.7	87.5	35.7	71.7
FFR	100	83.8	100	60	87

FFR is Highly Reproducible

Repeated measurement of FFR in 763 patients in the CONTRAST study

Johnson, et al. J Am Coll Cardiol Intv 2016;9:757-67.

FFR is Highly Reproducible

Repeated measurement of FFR in 763 patients in the CONTRAST study

Probability that revascularization decision will change if measurement is repeated

Johnson, et al. J Am Coll Cardiol Intv 2016;9:757-67.

Landmark Analysis of Death/MI after 7 days in FAME 2 Trial

De Bruyne, et al. New Engl J Med 2014;371:1208-17.

1,029 lesions from 607 medically treated patients in FAME 2

Barbato, et al. J Am Coll Cardiol 2016;68:2247-55.

1,029 lesions from 607 medically treated patients in FAME 2

Quartile	n (%)	HR (95% CI)	p Value
MACE			
Q1 (0.87-1.00)	14 (5.4)	Ref.	
Q2 (0.78-0.86)	50 (19.2)	3.44 (1.90-6.23)	<0.001
Q3 (0.64-0.77)	91 (35.0)	6.71 (3.82-11.78)	< 0.001
Q4 (≤0.63)	105 (40.4)	9.84 (5.63-17.20)	<0.001
Death or MI			
Q1 (0.87-1.00)	6 (14.0)	Ref.	-
Q2 (0.78-0.86)	8 (18.6)	1.20 (0.41-3.45)	0.74
Q3 (0.64-0.77)	17 (39.5)	2.52 (0.99-6.39)	0.05
Q4 (≤0.63)	12 (27.9)	2.04 (0.76-5.43)	0.15
Urgent revascularization	n		
Q1 (0.87-1.00)	2 (2.9)	Ref.	-
Q2 (0.78-0.86)	8 (11.4)	3.61 (0.77-16.99)	0.10
Q3 (0.64-0.77)	31 (44.3)	14.29 (3.42-59.73)	< 0.001
Q4 (≤0.63)	29 (41.4)	15.56 (3.71-65.20)	< 0.001

Barbato, et al. J Am Coll Cardiol 2016;68:2247-55.

1,029 lesions from 607 medically treated patients in FAME 2

Negative Concordance: FFR >0.80; DS <50%</th>Negative Mismatch: FFR >0.80; DS ≥50%Positive Mismatch: FFR ≤0.80; DS <50%</td>Positive Concordance: FFR ≤0.80; DS ≥50%

Ciccarelli, et al. Circulation 2018;137:1475-85.

Explosion of FFR Data

Number of PubMed papers each year with "fractional flow reserve" in the title or abstract

FFR and Outcomes Trials

Randomized, multicenter outcomes trials with FFR

FFR and Outcomes Trials

Randomized, multicenter outcomes trials with FFR or iFR

FFR Remains the Gold Standard

- Well-founded scientific basis
- Validated in an animal model
- Well-validated against non-invasive tests for ischemia
- Highly reproducible
- Predicts clinical outcomes
- Most widely studied index

